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ABSTRACT
In this work, a multifractal framework is proposed to investigate the effects of current sheets in solar wind turbulence. By using
multifractal detrended fluctuation analysis coupled with surrogate methods and volatility, two solar wind magnetic field time
series are investigated, one with current sheets and one without current sheets. Despite the lack of extreme-events intermittent
bursts in the current sheet-free series, both series are shown to be strongly multifractal, although the current sheet-free series
displays an almost linear behavior for the scaling exponent of structure functions. Long-range correlations are shown to be the
main source of multifractality for the series without current sheets, while a combination of heavy-tail distribution and nonlinear
correlations are responsible for multifractality in the series with current sheets. The multifractality in both time series is formally
shown to be associated with an energy-cascade process using the 𝑝-model.
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1 INTRODUCTION

Fractals have been widely employed in nonlinear analysis along the
past decades as a form of representing the complex topological struc-
tures produced by dynamical systems. These topological structures
are subsets of the phase space that may represent chaotic attractors,
stable or unstable manifolds, boundaries between basins of attrac-
tion, etc. Thus, when dynamical systems are investigated through
nonlinear time series analysis, the fractal indices computed from the
time series somehow represent the complexity of the structure of
an underlying set on which the solution lies. Additionally, the dy-
namical structure could be represented either by a monofractal or a
multifractal process. A monofractal process has a scaling law for a
fluctuation function which is a linear function of statistical moments
with a single scaling exponent. A multifractal process has a power-
law scaling which is a nonlinear function of statistical moments with
a range of scaling exponents (Salat et al. 2017). A monofractal scal-
ing is to be expected from dynamical processes behind perfectly
self-similar fractal sets, like deterministically generated Cantor sets
(Cantor 1883), or even from white noise time series (Ihlen 2012);
multifractals, on the other hand, are observed in inhomogeneous sys-
tems, such as strongly intermittent turbulence, where the presence of
strong fluctuations related to coherent structures localized in space
generate a departure from Gaussianity in probability distribution
functions (PDFs) of small-scale structure functions (Carbone et al.
2004), as seen in several analyses of observational magnetohydro-
dynamic data (see, e.g., Marsch & Tu (1998), Burlaga (2001), and
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Bruno (2019) for reviews on turbulence, intermittency and multifrac-
tal scalings in the solar wind).

A series of recent works have confirmed the complex and multi-
fractal nature of solar wind fluctuations. Chang et al. (2004) studied
the origin of complexity in space plasmas using MHD simulations,
dynamic renormalization group and wavelet analysis, arguing that
the turbulent plasmas in the solar wind and auroral regions are dom-
inated by a combination of propagating modes and nonpropagating
intermittent nonlinear structures, whose interactions with charged
particles may lead to the energization of plasma populations such as
auroral ions. Macek (2007) employed Voyager magnetic field data
in the outer heliosphere and Helios plasma data in the inner helio-
sphere to show that multifractal spectra of intermittent solar wind
fluctuations are consistent with that of the generalized two-scale
weighted Cantor set. Bolzan & Rosa (2012) analyzed magnetic field
data from the ACE satellite and conjectured that the presence of
large scale coherent structures during coronal mass ejections (CME)
decreases the multifractality, when compared with periods after the
CME events. Wavelet-leader multifractal analysis of magnetospheric
dissipations, as measured by the AL index, reveal that the magne-
tosphere is a multi-scale, complex, turbulent system, driven into a
non-equilibrium self-organized state, which may explain the obser-
vations of repeatable and coherent substorm phenomena with under-
lying complex multifractal behavior in the plasma sheet (Valdivia
et al. 2013). The interaction of the solar wind with the Earth’s mag-
netosphere also contributes for multifractality in measurements of
the geomagnetic activity, such as the geomagnetic induced current
(Wirsing & Mili 2020) and the Dst index (Ogunjo et al. 2021), al-
though internal sources of multifractality must also be considered, as
Gopinath (2016) suggests that multifractality of the auroral electrojet
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index is fairly independent of the solar activity cycle. Wawrzaszek
et al. (2019) characterized multifractality in intermittent turbulence
of heliospheric magnetic field fluctuations from Ulysses spacecraft,
concluding that intermittency/multifractality decreases with helio-
spheric distance, a result that was confirmed by Kiran et al. (2021).
Recent analysis of electron density fluctuations in the E-F valley
region of the ionosphere performed with the multifractal detrended
fluctuation analysis (MF-DFA) method show that irregularities are
multifractal, asymmetric, intermittent and non–homogeneous (Nee-
lakshi et al. 2022).

The direct link between intermittency and multifractality of mag-
netic and velocity field fluctuations in the solar wind was made clear
in Salem et al. (2009). Using data from the Wind spacecraft, they
applied the Haar wavelet transform to filter out intermittency from
the time series and showed that the scaling exponents for the struc-
ture functions behave as a linear function of statistical moments, as
in monofractal processes, therefore attributing multifractality in the
solar wind to intermittency. Gomes et al. (2019) obtained a similar
linear scaling after filtering out the current sheets from Cluster-1
intermittent magnetic field data, suggesting that the current sheets
are the coherent structures responsible for the nonlinear scaling of
the structure functions in the solar wind. This was confirmed after
inspection of time series of days when current sheets were absent,
that also showed a linear scaling.

A question remained on whether the linear scalings found by Salem
et al. (2009) and Gomes et al. (2019) indeed imply that the filtered
time series are monofractal or not, i.e., is the nonlinearity of the
distribution of scaling exponents of structure functions a general
measure of multifractality or is it just an indication of intermittency,
one among different possible sources of multifractality? One of the
goals of the current work is to answer this question. In this sense, it
is important to stress that the origin of multifractality is not always
related to fat-tailed PDFs, as it may also be caused by different
correlations in small and large fluctuations, such as linear or nonlinear
correlations (Kantelhardt et al. 2002; Wu et al. 2018). The source
of multifractality can be investigated by producing surrogates from
the original time series. Two types of surrogates are useful in this
context (Theiler et al. 1992; Lancaster et al. 2018). First, shuffling the
amplitudes of the original signal breaks all long-range correlations,
while keeping the PDF unchanged. Therefore, if the multifractality is
due to fat-tailed PDFs, it cannot be removed by shuffling the series.
If it is due, solely, to time correlations, the corresponding shuffled
series will be monofractal. If both fat-tailed PDF and linear/nonlinear
correlations are present, the multifractality of the shuffled series
should be smaller than that of the original series (Barunik et al.
2012). The second type of surrogate is produced by randomizing the
phases of the Fourier modes of the original time series, producing a
new series with Gaussian PDF, but preserving the linear correlations
of the original series. If the random phases time series becomes
monofractal, then nonlinear correlations and/or non-Gaussian PDFs
are the source of multifractality. If the multifractality is preserved in
the random phases time series, then linear correlations are its source.

Studies of surrogate time series have been conducted to probe
the origin of multifractality in a wide range of contexts, including
financial markets (Barunik et al. 2012), human gate diseases (Dutta
et al. 2013), near-fault earthquake ground motions (Yang et al. 2015),
solar irradiance fluctuations (Madanchi et al. 2017), air pollutants
(Dong et al. 2017), meteorological time series of air pressure, air
temperature and wind speed (Gos et al. 2021) and rainfall records
(Sarker & Mali 2021). The surrogate method was also employed in
time series of CME linear speed during solar cycle 23 to conclude
that the multifractality is due to both the broad PDF and long range

time correlations (Chattopadhyay et al. 2018). In the present paper,
we use the method to reveal the role of current sheets in the origin
of multifractality in the solar wind. By analyzing two qualitatively
different magnetic field time series from Cluster-1, one filled with
current sheets and another one void of current sheets, we develop
a nonlinear methodology based on the MF-DFA method coupled
with the volatility and surrogate time series. Thus, the contribution
of small- and large-scale magnetic fluctuations can be quantified in
different types of multifractal solar wind series. It is revealed that
when the multifractality is not mainly due to the PDF, the scaling
exponents display an almost linear behavior as a function of the
moments of the structure function, despite the presence of strong
multifractality in the series. In addition, we employ the 𝑝-model
(Halsey et al. 1986; Meneveau & Sreenivasan 1987) to confirm that
the multifractality in both types of solar wind time series can be
attributed to a turbulent energy cascade process.

This paper is organized as follows. In section II, the MF-DFA
methodology is briefly described; in section III, the multifractal anal-
ysis of two solar wind time series is conducted, including their volatil-
ity time series; section IV analyses the surrogate of the original and
volatility time series, to determine if the source of the multifractality
in the solar wind is due to PDF or correlations; section V presents
the scaling exponent analysis of the original and surrogate times se-
ries; section VI describes the 𝑝-model analysis. Finally, section VII
presents the conclusions.

2 MF-DFA

The MF-DFA method is a generalization of the detrended fluctu-
ation analysis (DFA) method for quantifying long-range correla-
tions in non-stationary time series (Kantelhardt et al. 2002). The
method identifies the scaling of 𝑞th-order moments of the time se-
ries (Norouzzadeh et al. 2007). The MF-DFA method consists of five
steps:

(i) The time series 𝑥𝑘 (𝑘 = 1, 2, · · · , 𝑁) is integrated:

𝑌 (𝑖) =
𝑖∑︁

𝑘=1
[𝑥𝑘 − ⟨𝑥⟩] , 𝑖 = 1, ..., 𝑁 (1)

where ⟨𝑥⟩ is the average value of the data set.
(ii) The series𝑌 (𝑖) is divided into 𝑁𝑠 ≡ int(𝑁/𝑠) non-overlapping

segments with equal lengths 𝑠. Since 𝑁 is usually not a multiple of
𝑠, some of the data points in the time series may be left out of the
last segment. To fix this, the procedure is repeated starting from the
opposite end of the time series and going backwards. Consequently,
2𝑁𝑠 segments are obtained.

(iii) The local trend for each 2𝑁𝑠 segments is calculated. Then
the variance is given by

𝐹2 (𝑠, 𝜈) = 1
𝑠

𝑠∑︁
𝑖=1

{𝑌 [(𝜈 − 1) 𝑠 + 𝑖] − 𝑦𝜈 (𝑖)}2 , (2)

for each segment indexed by 𝜈 = 1, . . . , 𝑁𝑠 and

𝐹2 (𝑠, 𝜈) = 1
𝑠

𝑠∑︁
𝑖=1

{𝑌 [𝑁 − (𝜈 − 𝑁𝑠) 𝑠 + 𝑖] − 𝑦𝜈 (𝑖)}2 (3)

for 𝜈 = 𝑁𝑠 + 1, . . . , 2𝑁𝑠 , where 𝑦𝜈 is the 𝑚-th degree fitting poly-
nomial of each segment 𝜈. This polynomial detrending of order 𝑚 in
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the 𝑌 profile eliminates trends up to order 𝑚 − 1 in the original time
series and specifies the type of MF-DFA applied.

(iv) The average over all segments is calculated to obtain the 𝑞th-
order fluctuation function:

𝐹𝑞 (𝑠) =
(

1
2𝑁𝑠

2𝑁𝑠∑︁
𝜈=1

[𝐹2 (𝑠, 𝜈)] 𝑞
2

) 1
𝑞

, (4)

where, in general, the 𝑞 parameter can take any real value except
zero. For 𝑞 = 2, the equation returns the DFA method. Steps 2 to 4
are repeated for different time scales 𝑠.

(v) The scaling behavior of the fluctuation function is defined by
the log-log plot of 𝐹𝑞 (𝑠) × 𝑠 for each value of 𝑞. If 𝑥𝑖 have long-range
correlations, for large values of 𝑠, 𝐹𝑞 (𝑠) increases as a power-law,

𝐹𝑞 (𝑠) ∼ 𝑠ℎ (𝑞) . (5)

The scaling exponents ℎ(𝑞) are the generalized Hurst exponents,
defined as the slope of the log 𝐹𝑞 (𝑠) × log(𝑠) graph, where for ℎ(2)
we have the standard Hurst Exponent (Hurst et al. 1965). For positive
values of 𝑞, ℎ(𝑞) describes the scaling behavior of segments with
large fluctuations and for negative values of 𝑞, ℎ(𝑞) describes the
scaling behavior of segments with small fluctuations. For monofrac-
tal series, ℎ(𝑞) is independent of 𝑞, but for multifractal series ℎ(𝑞)
depends on 𝑞. The generalized Hurst exponent is directly related to
the Renyi exponent (Renyi 1976) 𝜏(𝑞) by

𝜏(𝑞) = 𝑞 ℎ(𝑞) − 1 . (6)

Besides ℎ(𝑞), another way to characterize the multifractality of a
time series is by the singularity spectrum 𝑓 (𝛼), which is related to
𝜏(𝑞) via a Legendre transform,

𝛼 = 𝜏′(𝑞) and 𝑓 (𝛼) = 𝑞 𝛼 − 𝜏(𝑞) , (7)

where 𝛼 is the singularity exponent. This 𝑓 (𝛼)×𝛼 relation represents
the multifractal spectrum and has a concave parabolic shape.

From the multifractal spectrum, it is possible to obtain a set of
parameters to characterize each series: (i) the 𝛼 value where 𝑓 (𝛼) is
maximum, 𝛼0; (ii) the 𝛼 width, Δ𝛼 = 𝛼𝑚𝑎𝑥 −𝛼𝑚𝑖𝑛, where 𝛼𝑚𝑖𝑛 and
𝛼𝑚𝑎𝑥 are, respectively, the minimum and maximum values of 𝛼 that
mark the base of the concave parable in the multifractal spectrum (Δ𝛼
is a measure of multifractal strength); (iii) the asymmetry parameter:

𝐴 =
𝛼𝑚𝑎𝑥 − 𝛼0
𝛼0 − 𝛼𝑚𝑖𝑛

, (8)

where 𝐴 = 1 means the spectrum is symmetric, for 𝐴 > 1 the spec-
trum is right-skewed asymmetric, and for 𝐴 < 1 the spectrum is
left-skewed asymmetric (Shimizu et al. 2002; de Freitas et al. 2016).
A multifractal spectrum with a long right tail has a greater contri-
bution from small fluctuations. By contrast, a multifractal spectrum
with left asymmetry has a greater influence by local fluctuations with
large values (Ihlen 2012).

Another useful multifractal parameter can be extracted from the
𝜏(𝑞) × 𝑞 relation. As can be seen from Eq. (6), 𝜏(𝑞) has a linear
dependence with 𝑞 for monofractal series, where ℎ(𝑞) is constant.
In contrast, for multifractal series, this dependence is nonlinear. The
𝑞-dependency of the Renyi exponent can be quantified by the co-
efficient of determination, 𝑅2. 𝑅2 measures the proportion of the
variance for a dependent variable that is predictable by an inde-
pendent variable in a linear regression model (Barrett 1974). The
coefficient of determination is given by:

𝑅2 = 1 −
Í𝑛
𝑖=1 (𝜏𝑖 − b𝜏𝑖)2Í𝑛
𝑖=1 (𝜏𝑖 − 𝜏)2 , (9)

where 𝜏𝑖 = 𝜏(𝑞𝑖) is the observed dependent variable, b𝜏𝑖 is the corre-
sponding predicted value and 𝜏 is the mean of the observed data. 𝑅2

varies from 0 to 1, where in our case 1 represents a perfect fit to the
linear dependence model. In other words, the measure of 𝑅2 for the
𝜏(𝑞) × 𝑞 relation will be closer to 0 for multifractal series and closer
to 1 for monofractal series.

The MF-DFA method has best results if the time series are reason-
ably stationary, i.e., if they have a noise like structure. As suggested
by Eke et al. (2002), it is possible to determine if the time series have
noise like structure by computing a monofractal detrended fluctua-
tion analysis prior to conducting the MF-DFA analysis. Time series
are noise like if their Hurst exponent ℎ(2) is between 0 and 1, and they
are random walk like (nonstationary) if ℎ(2) is above 1. Ihlen (2012)
suggests that time series with ℎ(2) above 1.2 should be differentiated
before application of the MF-DFA analysis.

3 MULTIFRACTAL ANALYSIS OF SOLAR WIND DATA

We analyze solar wind magnetic field data detected with the Flux-
gate Magnetometer (FGM) onboard Cluster-1, with 22 Hz sampling
frequency. Two time series with 24 hours are investigated, one from
2008 March 9 and one from 2016 January 25. To reduce the com-
putational time of the analysis, the data length has been reduced by
using a decimation process. The low-pass Chebychev Type I infinite
impulse response filter was used with a reduction factor 𝑀 = 10,
order 8 and 0.8/𝑀 cut-off frequency. This decimation process is
described in Gomes et al. (2019).

After decimating the time series, we apply the MF-DFA method
with four input parameters: minimum scale 𝑠𝑖 , maximum scale 𝑠 𝑓 ,
order of fluctuation function 𝑞 and polynomial order 𝑚. The scale
refers to multiple segment sizes of the cumulative series and varies
from a minimum segment size 𝑠𝑖 to a maximum 𝑠 𝑓 . In this work, we
use 𝑠𝑖 = 10 and 𝑠 𝑓 = 𝑁 , where 𝑁 is the length of the time series;
𝑞 varies between −20 and 20 with an increment of Δ𝑞 = 0.25, and
𝑚 = 3. This choice of parameters was supported by several tests. The
recommendation for large time series is to use a polynomial trend
order around 𝑚 = 3; 𝑠 𝑓 = 𝑁 was chosen to avoid deformations in the
shape of the multifractal spectra. Meanwhile, for the 𝑞 parameter the
use of values larger than 20 does not change the shape of the spectra
significantly.

3.1 MF-DFA analysis of the |𝐵| time series

Figure 1 shows the solar wind magnetic field time series studied
in this section for days 2008 March 9 and 2016 January 25. In the
upper panel, the time series for 2008 March 9 (red) and its first
order differencing (black) are shown. As it was explained in the
previous section, time-differencing is necessary in this case due to
the high nonstationarity of this series (ℎ(2) = 1.23). Throughout
the remaining of this section, only the differenced time series will
be used for March 9. This time series was characterized by Gomes
et al. (2019) as being permeated by large-scale current sheets. The
green regions in the original time series denote current sheets found
with Li’s method (Li 2008). The lower panel shows the time series
for 2016 January 25, which is characterized by a higher degree of
stationarity and the absence of current sheets (Gomes et al. 2019).
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Due to its higher stationarity (ℎ(2) = 0.96), there is no need to
perform a differencing in this series.

Figure 2 shows different multifractal measures of the two magnetic
field time series. Figure 2(a) shows the multifractal spectra, which
reveal a left asymmetry for the March 09 time series (red) and a
right asymmetry for the January 25 series (blue). The left asymme-
try indicates the stronger contribution to multifractality coming from
large fluctuations associated with values of 𝑞 > 0 in the intermittent
time series of the current sheet-filled time series of March 09; the
right asymmetry found for the current sheet-free time series of Jan-
uary 25 points to the greater contribution of small fluctuations to the
multifractality (Ihlen 2012). The width of the spectrum can be used
as a measure of the degree of multifractality of the series (Shimizu
et al. 2002). Comparing both spectra, it can be seen that they have
almost the same width (Δ𝛼 ≈ 0.541 for March 9 and Δ𝛼 ≈ 0.555
for January 25), which may be surprising, since the time series of
March 9 is visibly more intermittent, with strong bursts randomly
interspersed in time. In this case, the difference in multifractality can
be better quantified by the Renyi exponent 𝜏(𝑞), shown in Fig. 2(b).
It reveals a nonlinear behavior for both series, but with 𝑅2 ≈ 0.804
for March 9 and 𝑅2 ≈ 0.986 for January 25, thus, March 9 displays
higher multifractality.

3.2 MF-DFA analysis of the volatility time series

In the previous section, the degree of multifractality, as provided by
the width of the multifractal spectra, could not properly distinguish
between the two time series under investigation, which is unexpected,
given that the original series are not only visually very different, but
one of them is known to be permeated by coherent structures (current
sheets) and the other is not. This is probably because although the
differenced time series of 2008 March 9 is apparently more intermit-
tent than the series of 2016 January 25, most of the abrupt changes
in |𝐵| caused by the current sheets in the March 9 series have a
small amplitude and, therefore, do not produce strong bursts in the
time-differenced series. Such abrupt changes in |𝐵| can be enhanced
by employing the volatility, thus providing a way to investigate the
role of current sheets in the multifractality. In the present section, we
employ the volatility to enhance the distinct features of each series
due to current sheets before repeating the MF-DFA analysis.

The magnetic volatility, vol𝑚𝑎𝑔, can be calculated from the stan-
dard deviations of the log magnetic return Δ𝑟mag (𝑡) in a moving
window of length 𝜔 along 𝑁 sample points (Tsay 2010)

Δ𝑟mag (𝑡) = log
� |B(𝑡 + 𝜏) |

|B(𝑡) |

�
, (10)

volmag ( 𝑗) =

vuut
1

𝜔 − 1

𝜔+ 𝑗−1∑︁
𝑖= 𝑗

(Δ𝑟mag (𝑖) − 𝜇( 𝑗))2 , (11)

where 𝜏 is a time-lag, 𝑗 = 1, . . . , 𝑁 − 𝜔 + 1 and 𝜇( 𝑗) is the mean
Δ𝑟mag inside the window (Gomes et al. 2019). Note that since Δ𝑟mag
involves computing a time difference with lag 𝜏, there is no need to
difference the original time series to remove nonstationarities prior
to computation of the volatility. The 𝜔 ant 𝜏 values are estimated
from the Power Spectrum Density (PSD). Figure 3(a) shows the
PSD for the March 9 time series, where the inertial range is the
blue region between the dashed lines. This region was chosen as the
frequency interval where the slope of the fitted line is -5/3, following
Kolmogorov’s K41 theory (Kolmogorov 1941) for fully developed

turbulence (Frisch 1995). The frequency in the middle of the inertial
range marks the scale used to define both 𝜏 and 𝜔. It is also the scale
used in Li’s method to detect the current sheets, shown in Fig. 1. In
this way, we define 𝜏 = 𝜔 = 50𝑠. Figure 3(b) shows the PSD for the
January 25 series.

Figure 4 exhibits the volatility time series for 2008 March 9 (up-
per panel, red) and for 2016 January 25 (lower panel, blue) from the
decimated magnetic field data. Recall that the upper series has many
current sheets while the lower one has none. Note that, unlike the
January 25 series, the March 9 volatility series has several extreme
events. Most of these high peaks are due to the abrupt changes in
the magnetic field that take place when the satellite crosses a current
sheet in the solar wind, as evidenced by the coincidence between
extreme events in the volatility and current sheets detected by Li’s
method (see Fig. 2(a),(b) in Gomes et al. (2019)). As a consequence,
the multifractal spectra obtained from the volatility of both series
are very different, as seen in Fig. 5(a). Now, the spectrum of the
intermittent time series of March 9 is much broader than the one
from January 25. The 𝛼−width is Δ𝛼 = 0.94134 for March 9 and
Δ𝛼 = 0.74921 for January 25. The volatility has enhanced the con-
tribution of the extreme events due to current sheets, thus showing
the signature of coherent structures present in the solar wind that
were partially hidden in the multifractal analysis of the original time
series. The Renyi exponents are shown in Fig. 5(b); once again, the
curve for March 9 is more concave than for January 25, reflecting its
higher level of multifractality. The coefficient of determination for
the Renyi exponents is 𝑅2 = 0.97464 for the volatility of March 9
and 𝑅2 = 0.98125 for the volatility of January 25. It is clear that the
volatility has highlighted the role of current sheets in the multifractal
singularity spectrum.

4 MF-DFA OF SURROGATE TIME SERIES

According to Madanchi et al. (2017), there are two features in a
time series that can lead to its multifractality: (i) the presence of
heavy-tailed PDFs, as in highly intermittent series, and (ii) the exis-
tence of linear and non-linear correlations. In this section, we try to
identify the origin of the multifractality in the solar wind by means
of two surrogate time series derived from the original |𝐵| data. As
mentioned in the introduction, the shuffled time series is a random
permutation of the original time series in the real space that destroys
all temporal correlations, while keeping the same PDF for the am-
plitudes of |𝐵|. On the other hand, the random phases surrogate is
generated from the Fourier Transform of the original |𝐵| series. A
new Fourier series is generated by shuffling the phases of the Fourier
modes while keeping their power spectrum (Maiwald et al. 2008).
The inverse Fourier transform of this new frequency spectrum is the
random phases surrogate, which keeps the power spectrum and linear
autocorrelation of the original series, but has a Gaussian PDF and
breaks the nonlinear correlations. After generating these two surro-
gates, we repeat the multifractal analysis described in the previous
section; if the shuffled surrogate has a multifractal spectrum which
is considerably narrower than the spectrum of the original series,
it means that time correlations are an important source of multi-
fractality in the original time series. If the random phases surrogate
has a multifractal spectrum which is considerably narrower than the
spectrum of the original series, it means that fat-tailed PDFs and/or
nonlinear correlations are important for the multifractality. Note that
both kinds of multifractality mentioned above can be simultaneously
present in a time series (Norouzzadeh et al. 2007; Madanchi et al.
2017). If both the shuffled and random phases surrogates produce
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Figure 1. Solar wind time series of |𝐵 | measured by Cluster-1. (a) For 2008 March 9 (red), containing current sheets (green), and its first order differencing
(black); (b) time series of |𝐵 | for 2016 January 25 (blue), without current sheets.
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Figure 2. (a) Multifractal spectrum of |𝐵 | for 2008 March 9 (red), and 2016
January 25 (blue). (b) Renyi exponents for 2008 March 9 (red), and 2016
January 25 (blue).

monofractal spectra, then nonlinear correlations (but not fat-tailed
PDFs) are the source of multifractality. In the following subsections,
we perform this analysis for both the |𝐵| and volatility time series of
2008 March 9 and 2016 January 25.

4.1 Magnetic Field time series, 2008 March 9

Figure 6 shows the differenced time series of |𝐵| for March 9 (red)
with its shuffled (green) and random phases (magenta) surrogates.
Clearly, the shuffled surrogate keeps the extreme events of the dif-
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Figure 3. Power spectral density for solar wind magnetic field of (a) 2008
March 9, and (b) 2016 January 25. The blue region is the inertial range and
the red line is the linear fit for this interval, with a slope equal to -5/3 for
March 9 and slope -3/2 for January 25.

ferenced |𝐵| series, but the same events are absent from the random
phases surrogate.

Figure 7(a) displays the multifractal spectra for the March 9 orig-
inal and surrogate time series. For the shuffled spectrum (green) we
see a small reduction in the width when compared with the original
one (red). This means that there is a contribution from correlations to
multifractality, along with the contribution of the PDF. Considering
the random phases spectrum (magenta), its width reduces drastically
(the Δ𝛼 variation is about 0.32), which points to a significant con-
tribution to multifractality coming from a non-Gaussian PDF and/or
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Figure 4. Volatility of solar wind magnetic field time series for (a) 2008
March 9, and (b) 2016 January 25.
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Figure 5. (a) Multifractal spectra for the volatility in 2008 March 9 (red), and
2016 January 25 (blue). (b) Renyi exponents for the volatility in 2008 March
9 (red), and 2016 January 25 (blue).
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Figure 6. Differenced time series for 2008 March 9 (red) and the respective
surrogates: shuffled (green), and random phases (magenta).
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Figure 7. (a) Multifractal spectrum of |𝐵 | for 2008 March 9 (red) and the
respective surrogates: shuffled (green), and random phases (magenta). (b)
Renyi exponents for 2008 March 9 (red) and the respective surrogates: shuffled
(green), and random phases (magenta).

nonlinear correlations. The conclusion from both spectra is that the
PDF has the strongest contribution to multifractality. The contribu-
tion of the PDF is due to the presence of strong intermittent bursts
(extreme events) in the March 9 time series. Since these bursts have
been shown to be related to large current sheets (see Gomes et al.
(2019)), the current sheets can be seen as the origin of most of the
multifractality in this time series. Figure 7(b) confirms this conclu-
sion by showing the Renyi exponent as a function of 𝑞, where the
random phases surrogate has a smaller concavity than the shuffled
surrogate.

4.2 Magnetic field time series, 2016 January 25

Figure 8 shows the time series for January 25 (blue) with its shuffled
(green) and random phases (magenta) surrogates. Figure 9(a) shows
a significant width reduction in both surrogate spectra in comparison
with the original volatility spectrum (blue). The spectrum of the shuf-
fled series (green) has a width Δ𝛼 = 0.194, indicating a difference
of 0.36 with the spectrum of |𝐵|. Similarly, the spectrum for the ran-
dom phases series has a small width, about Δ𝛼 = 0.32, a difference
of 0.23 with the spectrum of |𝐵|. So, there is strong influence from
long-range correlations as well as non-gaussianity on the January 25
magnetic field multifractality, but the contribution of the correlations
is preponderant, since the shuffled spectrum is considerably narrower
than the random phases spectrum.

4.3 Volatility time series, 2008 March 9

We proceed with the analysis of the origin of the multifractality for
March 9 using the volatility, as shown in Fig. 10 for the original (red),
shuffled (green) and random phases (magenta) time series. The cor-
responding multifractal spectra in Fig. 11(a) show a wide parabola
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Figure 8. Time series for 2016 January 25 (blue) and the respective surrogates:
shuffled (green), and random phases (magenta).
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Figure 9. (a) Multifractal spectrum for 2016 January 25 (blue) and the re-
spective surrogates: shuffled (green), and random phases (blue). (b) Renyi
exponents for 2016 January 25 (blue) and the respective surrogates: shuffled
(green), and random phases (magenta).

for the original volatility series (red) and two narrower parabolas
related to its shuffled (green) and random phases (magenta) series.
The random phases spectrum has a width of about Δ𝛼 = 0.39 and the
shuffled spectrum has a width of Δ𝛼 = 0.35. Since both spectra have
approximately the same width, it shows an important feature that was
not so clear from the multifractal spectra of the |𝐵| surrogate series
(Fig. 7), that is, the importance of the nonlinear correlations, which
play a key role, together with the PDF, in the origin of the multifrac-
tality for the March 9 series. Since the volatility is computed with a
lag-time of 𝜏 = 50𝑠, it is better suited for measuring the relevance
of long-range nonlinear correlations than the time-differenced |𝐵|
series. Figure 11(b) confirms that the shuffled and random phases
series have almost linear Renyi exponents, thus, the series are closer
to monofractal.

Figure 10. Time series Volatility for 2008 March 9 (red) and the respective
surrogates: shuffled (green), and random phases (blue).
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Figure 11. (a) Multifractal spectrum for the volatility of 2008 March 9 (red)
and the respective surrogates: shuffled (green), and random phases (magenta).
(b) Renyi exponents for the volatility of 2008 March 9 (red) and the respective
surrogates: shuffled (green), and random phases (magenta).

4.4 Volatility time series, 2016 January 25

Figure 12 shows the volatility time series of the January 25 time
series (blue) and its shuffled (green) and random phases (magenta)
surrogates. Figure 13(a) shows the corresponding multifractal spec-
tra. Once again, the reduction in the width for both surrogate spectra
means that a mutual contribution to multifractality coming from
long-range correlations and non-Gaussianity is present, with a clear
predominance of the long-range correlations effects, since the shuf-
fled spectrum is much narrower than the random phases spectrum.

A quantitative comparison of all the results for the |𝐵| time series
and volatility time series of March 9 and January 25 is provided by
Tables 1 to 3. Table 1 shows 𝑅2 for the Renyi exponent of |𝐵| and its
volatility for March 9 and January 25; Table 2 shows the width of the
multifractal spectra,Δ𝛼; Table 3 shows the asymmetry of the spectra,
𝐴. In general, all spectra for January 25 are right-asymmetric due to
the importance of small scale fluctuations; for March 9, some spectra
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Figure 12. Time series of the volatility for 2016 January 25 (blue) and the
respective surrogates: shuffled (green), and random phases (magenta).
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Figure 13. (a) Multifractal spectrum for the volatility of 2016 January 25
(blue) and the respective surrogates: shuffled (green), and random phases
(magenta). (b) Renyi exponents for the volatility of 2016 January 25 (blue)
and the respective surrogates: shuffled (green), and random phases (magenta).

Table 1. 𝑅2 of the Renyi exponent for magnetic field and volatilities of 2008
March 9 and 2016 January 25

March 9 January 25
|𝐵 | Volatility |𝐵 | Volatility

Original 0.80413 0.97464 0.98597 0.98125
Shuffle 0.97505 0.96748 0.99537 0.99573
Random Phases 0.98185 0.99637 0.99601 0.99424

are left-asymmetric due to the importance of large-scale fluctuations,
but the random phases show right asymmetry, since in the random
phases surrogate the effects of non-Gaussian PDFs are destroyed.

Table 2. Width of 𝛼, Δ𝛼, for magnetic field and volatilities of 2008 March 9
and 2016 January 25.

March 9 January 25
|𝐵 | Volatility |𝐵 | Volatility

Original 0.54112 0.94134 0.55568 0.74921
Shuffle 0.36663 0.40332 0.19468 0.19873
Random Phases 0.21802 0.39299 0.32181 0.43088

Table 3. Spectrum Asymmetry, 𝐴, for magnetic field and volatilities of 2008
March 9 and 2016 January 25.

March 9 January 25
|𝐵 | Volatility |𝐵 | Volatility

Original 0.49873 0.63885 1.10709 1.31215
Shuffle 0.51279 0.53342 1.30854 1.18283
Random Phases 1.33583 1.41817 1.45999 1.47002

5 ZETA FUNCTION

Another function typically employed in multifractal analyses of time
series is the zeta function. Consider the structure function for |𝐵|
(Frisch 1995):

𝑆𝑝 (𝜏) = ⟨[|𝐵(𝑡 + 𝜏) | − |𝐵(𝑡) |] 𝑝⟩ , (12)

where ⟨·⟩ is the time average, 𝜏 is the time lag and 𝑝 are the statistical
moments for the time series of 𝐵. Assuming scale invariance inside
the inertial range, 𝑆𝑝 follows a power law

𝑆𝑝 (𝜏) ∼ 𝜏𝜁 (𝑝) , (13)

where 𝜁 (·) is the zeta function or scaling exponent of the structure
function. So, 𝜁 (𝑝) is obtained by the slope of the log 𝑆𝑝 (𝜏) × log 𝜏
plot. The importance of this parameter comes from Kolmogorov’s
K41 theory (Kolmogorov 1941) and the IK (Iroshnikov-Kraichnan)
theory (Iroshnikov 1964; Kraichnan 1965) of self-similarity and scale
invariance inside the inertial range for a homogeneous and isotropic
turbulence, where the 𝜁 function was shown to be a linear function
of 𝑝, with 𝜁 (𝑝) = 𝑝/3 for K41 and 𝜁 (𝑝) = 𝑝/4 for IK.

In Fig. 14(a), the linear K41 theoretical zeta scaling exponent
function is shown by the black dashed line while the IK scaling ex-
ponent is denoted by a dotted line. The top panel (a) also shows the
zeta scaling exponent computed from the time series of |𝐵| for the
intermittent series of March 09 (red line with circles) and for the
current sheet-free series of January 25 (blue line with diamonds).
The zeta function for the March 09 series clearly departs from the
linear behavior, as expected for multifractal intermittent series, but,
surprisingly, the zeta function exhibits an almost linear relation with
𝑝 in the case of January 25, despite the fact that both series have
multifractal spectra with similar widths (see Fig. 2(a)). Thus, one
should be cautious before using the behavior of the scaling exponent
as a definite measure of multifractality, although it is a good mea-
sure of intermittency. To confirm this result, Fig. 14(b) compares
the zeta scaling exponents of the March 09 |𝐵| series (red line with
circles) with the zeta scaling exponents of its random phases series
(magenta line with triangles). Since the random phases series has a
Gaussian PDF, it removes from the original series the intermittent
extreme events responsible for the fat-tailed PDF and the zeta scaling
exponent becomes linear, following the K41 line. This result con-
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Figure 14. (a) Zeta functions for the magnetic field time series for 2008 March
9 (red circles) and 2016 January 25 (blue diamonds). (b) Zeta functions for
|𝐵 | 2008 March 9 (red circles) and its Random Phases (magenta triangles).
(c) Zeta functions for |𝐵 | 2016 January 25 (blue diamonds) and its Random
Phases (magenta triangles). The dashed lines represent the K41 scaling and
the dotted lines, the IK scaling.

firms the importance of the contribution from a fat-tailed PDF to the
multifractality of the March 09 series. In Fig. 14(c), the same analy-
sis is done for the January 25 series, where both the original series
and its random phases show an IK linear behavior, since none of
the series has fat-tailed PDF, although they have multifractal spectra
(see the blue and magenta spectra in Fig. 9(a)). We conclude from
this that the 𝜁-function is a good measure of multifractality due to
PDF, but misses the contribution of long-range correlations to the
multifractality.

6 𝑃−MODEL

In section 4, we showed that the multifractal spectra of the volatil-
ity of the solar wind are predominantly due to nonlinear and linear
correlations in the time series of January 25 and due to PDF and
nonlinear correlations for the March 9 time series. The presence of
long-range nonlinear correlations in both series is the signature of a
nonlinear dynamical system (possibly with some stochastic compo-
nent) governing the behavior of both series. In the present section, we
employ the 𝑝−model (Halsey et al. 1986; Meneveau & Sreenivasan
1987) to show that both the correlations and the extreme events men-
tioned above are actually a consequence of turbulent energy-cascade
processes with different scaling laws that depend on the presence or
absence of current sheets in the original time series.

The 𝑝−model is a model for non-homogeneous energy-cascading
process in the inertial range of fully-developed turbulence based on
the generalized Cantor set. Consider that the flux of kinetic energy
from eddies of size 𝐿 to smaller eddies is represented by a dissipa-
tion 𝐸𝐿 . In the one-dimensional version of the 𝑝−model, 𝐿 is the
length of an interval. Suppose that an eddy of size 𝐿 is unequally di-
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Figure 15. Left: Multifractal spectrum for the volatility of 2008 March 9 (red
circle) and its 𝑝−model fit (black line with dots). Right: Multifractal spectrum
for the volatility of 2016 January 25 (blue diamond) and its 𝑝−model fit (black
line with dots).

vided into two smaller eddies (i.e., two sub-intervals) of sizes 𝑙1𝐿 and
𝑙2𝐿, where 0 < 𝑙1 < 𝑙2 < 1 are the size factors, with the energy flux
𝐸𝐿 being distributed unto these sub-eddies with different probabili-
ties 𝑝1 and 𝑝2, i.e., the new dissipation values are 𝑝1 𝐸𝐿 and 𝑝2 𝐸𝐿 .
In practice, one can start the process with 𝐿 = 𝐸𝐿 = 1. Then, each
new eddy is further sub-divided into two smaller eddies with the same
size factors 𝑙1 and 𝑙2 and probabilities 𝑝1 and 𝑝2. This process may
be repeated until the sub-intervals reach the Kolmogorov dissipation

scale. At each cascading step 𝑛, there will be
�

𝑛
𝑚

�
segments with

length 𝑙𝑚1 𝑙𝑛−𝑚2 𝐿 and dissipation 𝑝𝑚1 𝑝𝑛−𝑚2 𝐸𝐿 , for 𝑚 = 0, 1, . . . , 𝑛.
As shown by Halsey et al. (1986) for the general two-scale Cantor
set, it is possible to obtain the analytic expressions for the singularity
exponent 𝛼 and the singularity spectrum 𝑓 as

𝛼 =
ln 𝑝1 + (𝑛/𝑚 − 1) ln 𝑝2
ln 𝑙1 + (𝑛/𝑚 − 1) ln 𝑙2

, (14)

𝑓 =
(𝑛/𝑚 − 1) ln(𝑛/𝑚 − 1) − (𝑛/𝑚) ln(𝑛/𝑚)

ln 𝑙1 + (𝑛/𝑚 − 1) ln 𝑙2
. (15)

For each 𝑛 and given values of 𝑙1, 𝑙2, 𝑝1 and 𝑝2, the variation of
𝑚 will provide the different values of 𝛼 and 𝑓 for the singularity
spectrum. Since 0 ≤ 𝑚 ≤ 𝑛 and 𝑚 is an integer, larger values
of 𝑛 provide a better definition of the spectrum. For a cascading
process with direct energy dissipation in the inertial range, we have
𝑝1 + 𝑝2 < 1 (Meneveau & Sreenivasan 1987). This means that a new
𝑑𝑝 dissipation parameter must be included, where 𝑑𝑝 = 1− 𝑝1 − 𝑝2.
Thus, we define 𝑝2 = 1− 𝑝1 − 𝑑𝑝, as well as 𝑙2 = 1− 𝑙1, in Eqs. (14)
and (15).

Figure 15 shows the MF-DFA multifractal spectra for the volatil-
ity series of March 9 (red circles) and January 25 (blue diamonds).
The 𝑝−model fits obtained from Eqs. (14) and (15) are also shown
(black line with dots). The values of 𝑝1, 𝑑𝑝 and 𝑙1 were obtained
with a Monte Carlo method that minimized the mean squared error
between the original and fitted spectra. For March 9th, we obtained
𝑝1 = 0.71, 𝑑𝑝 = 0.17 and 𝑙1 = 0.68. For January 25th, we obtained
𝑝1 = 0.51, 𝑑𝑝 = 0.11 and 𝑙1 = 0.66. The agreement between the
observational and theoretical curves confirms that the solar wind
multifractal spectra can be obtained from a turbulence cascade pro-
cess. This is a remarkable result, since the 𝑝−model was specifically
elaborated to represent turbulent cascade processes, and will usually
not be able to approximate the spectra of other processes.

Next, we compare the turbulent time series behind the 𝑝−model
spectra with the observational solar wind volatility time series in
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terms of their PSDs. To obtain the 𝑝−model PSDs, we use the prob-
abilities and size factors previously obtained with the Monte Carlo
method. By iterating the generalized two-scale Cantor set model, we
produce two 𝑝−model time series. Figure 16 shows a comparison of
the solar wind volatility time series with the 𝑝−model time series.
The two upper panels depict the solar wind series for March 9 (a)
and the corresponding 𝑝−model (b); the two lower panels depict the
solar wind series for January 25 (a) and the corresponding 𝑝−model
(b). The qualitative similarity between observational and 𝑝−model
time series is apparent in both cases.

A comparison of observed and simulated PSDs is shown in Fig.
17. Figure 17(upper panels) shows the PSDs for the volatility time
series of 2008 March 9 (left) and 2016 January 25 (right). The
blue region between the vertical dashed lines represents the inertial
range and the red line is the linear regression with slope −5/3 for
the March 9 series and −3/2 for the January 25 series. Thus, the
highly intermittent series of March 9 (with current sheets) exhibits a
K41 scaling, whereas the January 25 series (without current sheets)
shows an IK scaling. This fact had been previously established by
Li et al. (2011) and confirmed by Gomes et al. (2019) using PSDs
computed from the time series of |𝐵|. The PSDs computed from the
𝑝−model time series are shown in Fig. 17(lower panels), and they
reveal K41 scaling for the March 9 series and IK scaling for the
January 25 series, just like in the original solar wind series. Note that
in both cases the inertial range can be extended almost throughout
the whole PSDs shown, since our 𝑝-model has small dissipation.
We conclude that a K41 intermittent turbulence cascade is behind
the multifractality of the current sheet-filled time series of March
9 and an IK turbulence cascade is the origin of the multifractality
of the January 25 series. This result is consistent with other time
series analysed by us, that show that current sheets are responsible
for the K41 turbulence multifractality and the absence of current
sheets results in an IK turbulence multifractality in the solar wind
(see Table 4 in Gomes et al. (2019)).

7 CONCLUSIONS

We have presented a new methodology for multifractal analysis of
solar wind magnetic field data, based on MF-DFA, volatility and
surrogate time series. The MF-DFA provides a standard way to gen-
erate the singularity spectrum and the Renyi exponent; the volatility
enhances the extreme events, stressing the differences between series
with current sheets and series without current sheets; the surrogate
time series provide a way to infer the origin of multifractality. Addi-
tionally, the 𝑝-model was used to reproduce the multifractal behavior
of the solar wind series, indicating that a nonlinear turbulence en-
ergy cascade dynamical system is behind the observed dynamics. A
similar framework for multifractal analysis, but without the volatility
and the 𝑝-model, was used by Chattopadhyay et al. (2018) in the
analysis of CME linear speed data in the solar wind. In order to keep
the paper reasonably short, we have limited our presentation to only
two time-series, but we have tested our techniques in other series
and found that the conclusions presented are robust. An example of
analysis with two other time series is included in the supplementary
material (online). Further exploration of the methodology is left for
future works.

Just like in Gomes et al. (2019), we found the volatility to be very
useful to highlight the role of current sheets. In our case, they in-
crease the signature of multifractality due to PDF in the singularity
spectra. The surrogate analysis of both original and volatility series
shows that for time series with current sheets, multifractality is due to

Figure 16. (a) Volatility time series for 2008 March 9 (red) and (b) generated
𝑝−model time series (black) by 10𝑡ℎ interation. (c) Volatility time series for
2016 January 25 (blue) and (d) generated 𝑝−model time series (black) by
15𝑡ℎ interation.

Figure 17. (a) Left: power spectral density for 2008 March 9 volatility. (a)
Right: power spectral density for 2016 January 25 volatility. (b) Left: power
spectral density for generated 𝑝−model time series from 2008 March 9 volatil-
ity. (b) Right: power spectral density for generated 𝑝−model time series from
2016 January 25 volatility. The blue regions mark the inertial range and the
red lines are the linear fits for those intervals.
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both intermittency and nonlinear correlations; for time series with-
out current sheets, it is predominantly produced by the long-range
correlations. The 𝑝−model analysis reveals that those are mainly
nonlinear correlations, since the process behind the statistics is a
nonlinear turbulent energy cascade. So, turbulence is the common
source of the multifractality, but current sheets are the source of the
left asymmetry of the singularity spectrum, as well as the nonlinear
scaling exponent for the structure functions. In the absence of current
sheets, the small-amplitude fluctuations are the main source of the
right asymmetry of the singularity spectrum. It is important to stress
that despite being a multifractal process, the current sheet-free series
exhibits an almost linear scaling exponent for the structure functions,
which is sometimes confused with a monofractal process in the liter-
ature. Our results indicate that the Renyi exponent is more sensitive to
multifractality due to correlations than the structure function scaling
exponent (zeta function).

In dealing with separate cases where the presence or absence
of current sheets is considered, we are attacking one of the “nine
outstanding questions of solar wind physics", related by Vaill &
Borovsky (2020), namely, the origin and evolution of the mesoscale
(timescales in the range of minutes up to a few hours) plasma and
magnetic-field structure of the solar wind. These current sheets have
been associated with the border between adjacent flux tubes (Bruno
2019), while also being related to nonlinear turbulent interactions
rather than the presence of advected pre-existing flux-tube structures
(Bowen et al. 2018). In the present work, we do not focus on the origin
of those coherent structures, but measure their weight on the statis-
tics of solar wind fluctuations. We do this not only through Fourier
spectral indices and the scaling of structure functions, as in Salem
et al. (2009), but their contribution to multifractality is explored in
depth through the MF-DFA, volatility and surrogate techniques. As
we said, our results reveal that although the scaling of the structure
functions may be almost linear for series without current sheets, the
singularity spectra may still display broad parabolas, the signature
of highly multifractal signals. Thus, the scaling exponent of struc-
ture functions is adequate to measure multifractality due to PDFs,
but not for multifractality due to long-range correlations, where the
Renyi exponent and singularity spectra should be adopted. Multifrac-
tal series with nearly linear behavior of the scaling exponents were
also reported in Tam et al. (2010) (see their Fig. 4), where the rank-
order multifractal analysis (ROMA) is employed in the description
of auroral zone electric-field fluctuations.

In conclusion, the basic question related to mesoscale plasma tur-
bulence in the solar wind is not whether it is monofractal or mul-
tifractal, but if the source of the ubiquitous multifractality is the
PDF or the long-range correlations. The short answer is that in the
presence of current sheets, the PDF has a strong contribution for
multifractality, but in their absence, it is mainly due to correlations.
It would be interesting to check if the monoscaling of the structure
functions reported in previous solar wind time series, as in Kiyani
et al. (2009, 2013) and Bruno (2019) for turbulence at kinetic scales,
indeed reveal monofractality or if they indicate, in fact, multifractal
series due to correlations and not due to intermittency.
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